Numerical integration of variational equations.
نویسندگان
چکیده
We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom and investigate their efficiency in accurately reproducing well-known properties of chaos indicators such as the Lyapunov characteristic exponents and the generalized alignment indices. We find that the best numerical performance is exhibited by the "tangent map method," a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton equations of motion by the repeated action of a symplectic map S , while the corresponding tangent map TS is used for the integration of the variational equations. A simple and systematic technique to construct TS is also presented.
منابع مشابه
Numerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملHartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملNumerical solution of the system of Volterra integral equations of the first kind
This paper presents a comparison between variational iteration method (VIM) and modfied variational iteration method (MVIM) for approximate solution a system of Volterra integral equation of the first kind. We convert a system of Volterra integral equations to a system of Volterra integro-di®erential equations that use VIM and MVIM to approximate solution of this system and hence obtain an appr...
متن کاملConvergence of the multistage variational iteration method for solving a general system of ordinary differential equations
In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.
متن کاملUsage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations
Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2010